

REVIEW OF FLAT PANEL DISPLAY PROGRAMS AND DEFENSE APPLICATIONS

Bruce Gnade

DARPA

Electronics Technology Office

SPIE - Cockpit Displays IV April 23, 1997

AGENDA

- I. INTRODUCTION
- II. REVIEW RECENT ACCOMPLISHMENTS ON SEVERAL HDS PROGRAMS
- III. WHERE THE HDS PROGRAM IS GOING
- IV. CONCLUSIONS

HDS PROGRAM GOALS

OBJECTIVE:

Develop leading-edge display technology to meet diverse, but specific, DoD needs. The goals include increased power efficiency, reduced weight and improved ruggedness, while pushing the state-of-the-art in display performance. Demonstrate DARPA-funded technology in military applications.

WHAT DO DISPLAYS BRING TO DoD

IMPROVED PERFORMANCE FOR THE WARFIGHTER

- -Displays often control information uptake impacting the speed and effectiveness of decision making
- -Essential for the digital battlefield from command-and-control to the foot soldier

INCREASED RELIABILITY AND READINESS

- -Typical MTBF for CRT's or mechanical instruments is 300 hrs
- -Major reduction in Lifecycle Costs

Display Funding History

DoD Display Programs

DARPA CORE TECHNOLOGY AND SYSTEMS PROGRAMS

PROGRAM	YEARS	PURPOSE
High Definition Systems (HDS)	89 - Pres.	Create new display technology
Head Mounted Display Systems (HMDS)	93 - 97	Demonstrate HMDs in field
United States Display Consortium (USDC)	93 - Pres.	Provide industry a voice
Advanced Information Component Manufacturing (AICM)	93	Access DoE labs expertise
Phosphor Technology Center of Excellence (PTCOE)	94 - Pres.	Establish phosphor research
Thin Film Transistor Teams (TFT Teams)	94 - Pres.	Team academia with industry

AMLCD MANUFACTURING TESTBEDS AND DOMESTIC CAPACITY FUNDED BY DARPA

PROGRAM	YEARS	PURPOSE
AMLCD Manufacturing Technology (AMLCDMT)	93 - 94	Manufacturing testbed (OIS)
High Density AMLCD Mfg Technology (HDAMLCD)	94 - 95	Testbed (Xerox/Standish/ATT)
Defense Production Act Title III for AMLCD (DPA Title III)	94 - Pres.	Increase domestic capacity

DoD Display Programs (cont.)

EFFORTS FUNDED BY DARPA TECHNOLOGY REINVESTMENT PROGRAM (TRP) DUAL USE TECHNOLOGY PROGRAM

PROGRAM	YEARS	PURPOSE	
Active matrix electroluminescent, inorganic (AMEL)	94 - 97	Develop advanced EL (Planar-led)	
Field Emission Display, High Then Low Volume (FED HLV)	94 - 97	and the second	
Field Emission Display, Low Then High Volume (FED LHV)	94 - 97	led)	
		French Intel. Prop. (Raytheon/ Motorola)	

EFFORT FUNDED BY DARPA HDS AND TACOM HTP FOR VERTICAL INTEGRATION AT U.S. COMPUTER MAKER

PROGRAM YEARS PURPOSE

Field Emission Display, Original Equipment 97 - 98 Integrate FPD w/OEM (Micron)

Manufacturer (FED OEM)

DARPA OVERVIEW

TOTALS

2,269.2 2,140.4 2,206.4

ETO Mission and Thrusts

Engineered Microsystems to Perceive and Control the Physical World

Sense and Action Amplifiers for the Warfighter

- portable and embedded information systems
- imagers and displays to extend human sensory capabilities
- expendable, densely-distributed networked sensors
- cooperative, multiple and adaptive robotics

Battlespace Information Channels and Connectivity

- millimeter-wave and microwave components and subsystems
- integrated radio-frequency devices, systems and architectures
- platform-scale fiber and free-space optical networks

Large-Scale Integration of Multi-Technology Systems

- mechanical, optical, fluidic, and chemical VLSI
- mixed-technology packaging and interconnects
- electronic design tools for mixed energy domains

Exploratory Device and Fabrication Technologies

- tera-scale devices and integration
- molecular-scale pattern definition and transfer
- extreme-condition electronics and systems
- transduction and energy-coupling devices

Motivation for New Directions of the Office

Engineered Microsystems to Perceive and Control the Physical World

Electronics for computation has been enormously successful

- fixed, embedded and portable computing ability rapidly increasing ...
 ... but not because people want or need pervasive programming environments,
- previously dumb machines/structures/appliances/objects being invested with computing/processing capability for enhanced or new functionality,
- technologies that will pace continued advances in smart systems are not computing technologies but *technologies that invest systems with sense, communication and action abilities*.

DoD needs smart systems with enriched sense and action abilities

- to invest existing and future weapons systems with superior and overwhelming capabilities,
- that will amplify and project the military capability of available warfighters and platforms,
- for enhanced situational awareness and control of the battlespace.

HDS PROGRAM TODAY

- Innovative technology
- Manufacturing and Infrastructure
- Military significance
- Business plans
- Customer advocacy/buy-in
- Upcoming BAA
 - Miniature, small, and large area displays
 - Application demonstrations

HDS Program History

- The HDTV years
- The "lots of little innovative technology" years
- The manufacturing emphasis years
- The Dual-use years
- Today

Electroluminescent Display Applications

	Display Technology	Program	Application	Service
•	AMEL miniature display	Land Warrior	ground soldier BMD	US Army
•	AMEL miniature display	HSTAMIDS	mine detection HMD	US Army
•	AMEL miniature display	PNVG	fighter NVG/HUD	USAF
•	AMEL miniature display	NV/HUD	Helo NVG/HUD	USAF
•	AMEL miniature display	Comanche	Helo avionics HMD	US Army
•	AMEL miniature display	HMTI	Thermal ImagerHMD	US Army
•	AMEL miniature display	MARSS	Body-worn computer	US Army

